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Abstract 

Background:  We investigate the completeness of contact tracing for COVID-19 during the first wave of the COVID-
19 pandemic in Thailand, from early January 2020 to 30 June 2020.

Methods:  Uni-list capture-recapture models were applied to the frequency distributions of index cases to inform 
two questions: (1) the unobserved number of index cases with contacts, and (2) the unobserved number of index 
cases with secondary cases among their contacts.

Results:  Generalized linear models (using Poisson and logistic families) did not return any significant predictor (age, 
sex, nationality, number of contacts per case) on the risk of transmission and hence capture-recapture models did 
not adjust for observed heterogeneity. Best fitting models, a zero truncated negative binomial for question 1 and 
zero-truncated Poisson for question 2, returned sensitivity estimates for contact tracing performance of 77.6% (95% 
CI = 73.75–81.54%) and 67.6% (95% CI = 53.84–81.38%), respectively. A zero-inflated negative binomial model on the 
distribution of index cases with secondary cases allowed the estimation of the effective reproduction number at 0.14 
(95% CI = 0.09–0.22), and the overdispersion parameter at 0.1.

Conclusion:  Completeness of COVID-19 contact tracing in Thailand during the first wave appeared moderate, with 
around 67% of infectious transmission chains detected. Overdispersion was present suggesting that most of the index 
cases did not result in infectious transmission chains and the majority of transmission events stemmed from a small 
proportion of index cases.

Keywords:  COVID-19, Contact tracing, Thailand, Capture-recapture, Sensitivity

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Following the notification of the first COVID-19 cases 
in Thailand on 11 January 2020, the Department of Dis-
ease Control (DDC), Ministry of Public Health Thailand 
started recording essential information to monitor the 
epidemic. By early May 2020, the epidemic had receded 
from a daily peak of 188 cases in mid-March 2020 to 
single digit daily counts. The first wave of the epidemic 
was under control. At the time of writing Thailand was 

experiencing a second wave that started in early Decem-
ber 2020, with a cumulative number of just over 26,000 
cases as of 5 March 2021 (https://​ddc.​moph.​go.​th/​viral​
pneum​onia/​eng/​index.​php).

Thailand’s successful initial response to COVID-19 was 
aided by a strong national capacity to trace and quaran-
tine contacts using Rapid Response Teams and Village 
Health Volunteers who were trained during earlier major 
infectious disease outbreaks such as H1N1, SARS, and 
Avian Influenza [1, 2]. Despite the prompt reaction by 
local health authorities, the Intra-Action-Review (IAR) 
on Thailand’s response to COVID-19 highlighted the 
need for a sensitive COVID-19 surveillance system to 
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facilitate detection of individual cases, small clusters and 
monitor trends [3].

Contact tracing (CT) aims to identify, assess and 
manage contacts exposed to disease to prevent onward 
transmission [4]. In this capacity, CT remains a criti-
cal function towards the control of infectious diseases. 
Similar to other surveillance efforts, sensitivity, or the 
ability to detect all the events of interest, is one of the 
most relevant technical attributes towards the assess-
ment of CT performance [5]. For COVID-19, timeliness 
and sensitivity are the most cited performance attributes 
[6]. Whereas timeliness can be directly measured (and 
it is normally decomposed in multiple metrics to reflect 
the many steps in the flow of information and biological 
samples that constitute the surveillance system), that is 
not the case for sensitivity. Several approaches towards 
its estimation have been suggested [5, 7]. Here we focus 
on capture-recapture (CRC) models [8, 9]. Broadly, this 
family of methodological approaches estimates the num-
ber of individuals missing from identifying mechanisms 
such as disease surveillance systems (SS). The estimation 
of the SS sensitivity and probability of event detection 
follows.

CRC approaches have been extensively used to estimate 
disease SS sensitivity [10]. Specifically on CT, Polonsky 
and colleagues applied uni-list CRC models to Ebola 
Virus Disease (EVD) data from the 2018–2020 EVD out-
break in North Kivu Province, Democratic Republic of 
the Congo (DRC) [11]. The authors addressed two spe-
cific questions: (1) what is the true number of index cases 
with unobserved contacts (in effect assessing the sensi-
tivity of contact identification efforts), and (2) what is the 
true number of index cases with secondary cases among 
their contacts (in effect assessing the sensitivity of case 
detection among contacts). CRC approaches, on country 
aggregated case data, were also applied to estimate the 
true number of COVID-19 infections, estimated to be 
three to eight times larger than those reported [12].

Here we first describe Thailand’s first wave of COVID-
19 CT data, and then the application of uni-list CRC 
models to quantify the number of unobserved index 
cases, and CT sensitivity. Specifically, we aim to answer 
the following: question (1) how many index cases with 
contacts were missed by CT, and question (2) how many 
index cases with infected contacts were missed by the CT 
mechanism.

Methods
Materials
Our data stems from Thailand’s regular COVID-19 CT 
operations. Figure  1 presents a flowchart of the contact 
tracing process undertaken by the local communicable 
disease control units (CDCU) and joint investigation 

teams (JIT) from DDC. Once the patient is diagnosed as 
being infected with SARS-CoV-2, so called the confirmed 
case, contact tracing will be conducted to obtain the list 
of contacts. The identified contacts are classified as either 
high-risk contacts or low-risk contact following investi-
gation guidelines [13]. High-risk contact is defined as a 
contact who is more likely to contract the virus through 
exposure to respiratory secretions of the confirmed case 
while not wearing PPE according to standard precau-
tions. Low-risk contact is defined as a contact who is 
less likely to contract the virus from the confirmed case. 
This includes contacts who have not met the definition 
for high-risk contact. Only high-risk contacts were quar-
antined in the designated places and basic demographic 
information such as age, sex, and nationality were col-
lected and recorded in the contact form. Our data set 
comprises the period 11 January 2020 to 30 June 2020. A 
total of 352 cases were identified through contact tracing 
system leading to 6359 high risk contacts and 4299 low 
risk contacts.

Initial analysis
We describe the data according to the available demo-
graphic predictors associated with the index cases (age, 
sex, and nationality) and the number of contacts per 
index case. We applied logistic regression to assess 
whether any of the above predictors (with age as a con-
tinuous variable), had any effect on the probability of 
identifying secondary cases. Using the best fitting models 
of the count distributions (see next section), we regressed 
the observed covariates on the number of contacts per 
index case with at least one contact (n = 341) to assess 
whether we should adjust for covariates in our capture-
recapture calculations. We also applied a zero-inflated 
negative binomial model. By the full distribution of all 
index cases we mean the following: out of the 352 index 
cases only 30 had infectious contacts (secondary infec-
tions), namely 16 index cases had 1 infected contact, 9 
had 2, 4 had 3 and 1 had 4 infectious contacts. The large 
number of zeros is reflected in the zero-inflated nega-
tive-binomial modeling which adds simply an additional 
parameter just for those with zero infectious contacts.

Capture‑recapture modelling
We are interested in deriving an estimate of the unknown 
true number of COVID-19 cases with contacts that 
entered the CT mechanism. This would address ques-
tion 1 (Q1) as above. The tracing of contacts is likely to 
lead to the identification of secondary infections for a 
subset of index cases. This data informs question 2 (Q2). 
For both questions, the data can be binned into the num-
ber of index cases with one listed (Q1) or infected (Q2) 
contact ( f1 ), two listed or infected contacts ( f2 ), and so 
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on up to the number of index cases with the maximum 
number of listed or infected contacts ( fm ). Here, f0 , the 
frequency of index cases with unobserved contacts (for 
Q1) or unobserved infected contacts (for Q2) is unknown 
and the target of the inference. Statistically, the identifi-
cation process leads to a zero-truncated count distribu-
tion of cases with at least one listed or infected contact, 
i.e. with positive integers (ones, twos, threes, etc.), but no 
zeros. By applying CRC approaches, we can infer f0 , the 
number of unobserved cases with at least one listed or 
infected contact.

For both questions, we fit parametric models (Pois-
son, Negative Binomial, and Geometric) to the observed 
counts using the maximum likelihood method. Then, 
the smallest Akaike and Bayesian Information Criterion 

(AIC and BIC, respectively) are used for model selec-
tion. After estimating model parameters, we can esti-
mate f0 as

where n is the observed sample size and p0 is the esti-
mated probability of missing an index case with non-zero 
contacts as computed from the models. The population 
size estimator N̂ = n+ f̂0 follows.

In addition to the model-based estimators we con-
sider two further alternatives for comparison purposes: 
the Turing’s estimator [14] and Chao’s lower bound 
estimator [15]. Turing’s estimator is formulated under 
a homogeneous Poisson distribution with parameter � . 

(1)f̂0 =
np0

1− p0
,

Team investigated the confirmed case

Team interviewed a confirmed case to collect information 
about clinical history and closed contacts

Tracing contacts and 
classifying them 
based on level of 

exposure

Providing information about suitable 
infection control measures, self-monitoring 
for symptoms and other precautionary 
measures

High risk contact Low risk contact

Conducting laboratory investigation and 
monitoring sign and symptoms following 
DDC guideline

Done

Fig. 1  A brief flowchart of the contact tracing process undertaken by the local communicable disease control units (CDCU) and the Department of 
Disease Control (Compiled by the authors)
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Let p0 be the probability of zero count or missing an 
observation. We have

The estimate of p0 can be calculated from observed fre-
quencies as follows

where S =
∑m

i=0 ifi . Thus, Turing’s estimator for estimat-
ing the population size is given by

Chao (1987) suggested a mixed Poisson model with 
pi =

∫ inf

0
e−�

�
i

i! g(�)d� for i = 0, 1, 2, ... and arbitrary den-
sity g(�) [15]. Chao’s estimator incorporates not only the 
unobserved heterogeneity in the Poisson parameter but 
also leads to a very simple nonparametric estimator by 
applying the Cauchy–Schwarz inequality to the lower 
bound for the probability of a not observed event

Replacing these probabilities by observed frequencies, 
the lower bound for the estimate of zero counts is com-
puted as f̂0 ≥ f 21 /(2f2) . As a result, Chao’s lower bound 
estimator for the population size is

Clearly, (6) uses only part of the available information, f1 
and f2 , as opposed to Turing estimator that uses all the 
information in the sample by means of S. In addition, a 
mixing distribution g(�) is not required to be specified 
and estimated showing the non-parametric nature of this 
estimator.

Confidence Interval for the unknown population size
To estimate 95% confidence intervals (95% CIs), we use 
resampling techniques as described in the CRC literature 
[16, 17]. Suppose that N̂  is the estimated size under a fit-
ted model. Then, we generate B samples of size N̂  using 
the fitted model and its estimated parameter(s). For each 
sample, all zeros are truncated and the size estimate N̂b 
computed, for each of the samples b = 1, 2,..., B leading 
to a sample of estimates N̂1 , N̂2,..., N̂B . We choose B = 
10,000 to minimize bootstrap simulation random error, 
and then use two methods towards CI construction:

(2)p0 = e−� =
e−�

�

�
=

p1

�
.

(3)p̂0 =
f1/N

S/N
=

f1

S
,

(4)N̂Turing =
n

1− f1/S
.

(5)p0 ≥
p21
2p2

.

(6)N̂Chao = n+
f 21
2f2

.

•	 The normal approximation method, using the 
median a robust estimator for the mean where ¯̂N  = 
median(N̂b | b = 1, 2,..., B) and calculate the bootstrap 
standard error as 

 The 95% confidence interval for the true popu-
lation size can then be constructed by means of 
N̂ ± 1.96× SE.

•	 The percentile method where we use the 2.5th per-
centile of the distribution of N̂b as the lower end and 
the 97.5th percentile as the upper end.

Results
Descriptive analyses
In the period 4 Jan 2020 to 30 June 2020, 3171 cases were 
confirmed (Fig. 2). Of those, 352 (11.1%) index cases were 
followed through CT leading to the identification of sub-
sequent contacts for 341 of them. Among these 341 index 
cases with non-zero contacts from which 6,359 high risk 
contacts were listed, there were 44 index cases with one 
contact ( f1 = 44), 22 with two contacts ( f2 = 22), 24 
with three contacts ( f3 = 24), and so on. Table 1 shows 
the complete distribution of index cases with traced con-
tacts for the first 50 index cases. For infected contacts, 
the complete distribution is as follows: index cases with 
one infected contact ( f1 = 16), two infected contacts ( f2 
= 9), three infected contacts ( f3 = 4), and four infected 
contacts ( f4 = 1).

Of the 341 index cases with at least one contact, 196 
(57.48%) were males and 145 (42.52%) were females. At 
a 5% level of significance, there was sufficient evidence to 
conclude that there was a difference between the propor-
tions of these contacts from male and female (goodness-
of-fit Chi-square test with P-value = 0.007). See more 
details of the goodness-of-fit test in [18]. The median age 
was 37 years (mean = 39.62, interquartile range (IQR) = 
28–50, min = 0.3, max = 83). The statistics of age by gen-
der are given in the following: 

Age of male Age of female

Median 40 34

IQR 29–52 26–47

These showed median age for males was significantly 
greater than that of females (Wilcoxon signed-rank test 
with P-value = 0.004) [18]. The vast majority of cases 
(290, 85.04%) cases were Thai. Meanwhile, 51 (14.96%) 
were foreign nationals: 26 cases (7.62%) from China, 

(7)
SE =

√

median((N̂b −
¯̂
N )2|b = 1, 2, . . . ,B).
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5 cases (1.46%) from Japan, 4 cases (1.17%) from Den-
mark, and 61 cases from other locations.

From 341 index cases with non-zero contacts noted 
before, 30 (8.8%) index cases had at least one infected 
contact. The median age of this set of index cases was 
44 years (mean = 42.87 , IQR = 29.25–56, min = 6 and 
max = 80 ). Summary statistics of age by gender are 
concluded as follows: 

Age of male Age of female

Median 45.5 36

IQR 38.5–46.75 28.25–46.75

Furthermore, almost all index cases with infected 
contacts were Thai (28 cases, 93.33%). We also show 
summary statistics for the set of 30 index cases with 
infected contacts in Table 2.

A zero-truncated Poisson regression (best fitting model 
for this reduced dataset (30 observations)) showed no 
significant covariate effects on the number of contacts 
per index case with at least one secondary case. For the 
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Fig. 2  Epidemic curve of the COVID-19 outbreak in Thailand from 4 Jan 2020 to 30 June 2020 (3171 confirmed cases)

Table 1  Frequency distribution of counts of index cases with contacts (only first 50 counts)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

44 22 24 16 15 10 11 10 9 9

f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

9 10 6 7 8 16 3 2 3 8

f21 f22 f23 f24 f25 f26 f27 f28 f29 f30

5 3 5 6 1 6 1 2 4 5

f31 f32 f33 f34 f35 f36 f37 f38 f39 f40

4 4 1 3 2 2 1 1 1 6

f41 f42 f43 f44 f45 f46 f47 f48 f49 f50

0 3 1 1 1 2 0 1 0 2

Table 2  Summary statistics for the 30 index cases with infected 
contacts

Number of non-zero 
contacts

1 2 3 4

Frequency 16 9 4 1

Median age 40.5 41 59.5 66

Minimum age 6 20 26 66

Maximum age 64 80 68 66

95% CIs for mean of age 32.4–48.42 26.24–53.76 23.47–83.03 66

%Female 50% 55.56% 25% 0
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larger dataset of the number of contacts per index case, 
the best fitting model (a zero-truncated negative bino-
mial regression) also showed no significant effects of the 
covariates. These results support that no consideration of 
observed heterogeneity in our capture-recapture models 
was required. The logistic regression showed no signifi-
cant covariate effects either.

The application of a zero-inflated negative binomial 
model to the full distribution of all index cases (n = 352 
that includes all cases detected through the CT mecha-
nism and their contacts; we note that for 311 of such 
cases there were zero infected contacts, hence the use of 
a zero-inflated model) allows the estimation of the aver-
age number of secondary infections over the course of 
the outbreak that equates to an average effective repro-
ductive number (RE = 0.14; 95% CI: 0.09–0.22), and dis-
persion parameter (k = 0.1). We note that our estimate 
of the reproduction number applies to the entirety of the 
period under study and is sensitive to the implementa-
tion of several public and health social measures in coun-
try at different times.

Applications of capture‑recapture models 
towards the estimation of contact tracing sensitivity
As seen in Fig. 3, the distribution of index cases with con-
tacts presents a long tail. Clearly, this long-tailed distri-
bution is fitted a lot better by the negative binomial than 
by the Poisson distribution and the geometric distribu-
tion (see Fig.  4). The best fit (in effect addressing Q1) 
is given by a zero-truncated negative binomial model 
(Table  3) leading to an estimate of unobserved index 
cases with contacts of f̂0 = 98.18, and an estimated size 
of the overall count of index cases with contacts of N̂  = 

439.18. In the appendix we derive population size estima-
tors for Turing and Chao approaches for the chosen neg-
ative binomial distribution, and in Table 4 we present the 
results of the three estimators including 95% confidence 
intervals. Note that Chao’s estimator is slightly higher 
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Fig. 3  Frequency distribution of number of index cases with contacts (n = 341)
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Table 3  Model results and fit criteria for the count data of index 
cases with all contacts

Bold values indicate that Negative Binomial is the best fit for the distribution of 
the number of indexcases with contacts (n=341) due to the smallest AIC and BIC

Model Log-likelihood AIC BIC

Poisson ( ̂� = 18.648) −4663.285 9328.569 9332.401

Negative Binomial (mue = 
14.479, size = 0.4197)

−1304.133 2612.266 2619.93

Geometric ( ̂p = 0.0536) −1329.368 2660.735 2664.567
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than the other two, indicating potential residual hetero-
geneity. However, this might be also still within random 
error variation as the confidence intervals in Table  4 
express. Using the estimated f0 from the zero-truncated 
negative binomial model, we estimate the CT sensitivity 
to detect index cases with contacts as 341/(341 + 98) = 
0.776 or 77.6%.

Next, we address Q2. As can be seen in Fig. 5, the best 
fitting model is given by the zero-truncated Poisson 
model (Table  5) with �̂ = 1.126. Table  6 provides the 

estimated frequency of index cases with infected but 
unobserved contacts for the zero truncated Poisson 
f̂0 =

ne−�̂

1−e−�̂
 = 14.37, and those from the Turing and Chao 

approaches for reference. Using the estimated f0 from the 
zero truncated Poisson model we estimated the sensitiv-
ity of contact tracing to detect index cases with infected 
contacts as 30/(30 + 14) = 0.676 or 67.6%.

Discussion
Our results show a moderately sensitive CT system in 
Thailand, able to detect more than two thirds of infec-
tious transmission chains during this first wave. The 
capacity of the system to detect index cases with at least 
one contact was even higher at 77.6%. Further, it was 
straightforward to estimate the average intensity of the 
transmission; this appeared low as shown by the esti-
mated RE (0.14; 95% CI: 0.09–0.22). As reported by an 
increasing number of works [19, 20], we have also found 
substantial overdispersion in our data suggesting that 
most of the index cases did not result in infectious trans-
mission chains and the majority of transmission events 
stemmed from a small proportion of index cases.

The magnitude of the unobserved fraction of COVID-
19 cases has been estimated as substantial. Here we 
propose a mechanism towards the estimation of such 
undetected population but stress that as the unit of 
study is the index case once they enter the CT mecha-
nism, which allows the repeated identification of the 
index case through his/her contacts and the subsequent 

Table 4  Estimates of unobserved contacts, population size and 95% CI (n = 341) for the three approaches (based upon the negative-
binomial model)

Fifth and sixth column show bootstrap CI by the normal approximation and percentile methods, respectively

Estimators f̂0 N̂ Bootstrap median 95% CI normal 
approximation

CI from percentile BT

MLE 98.18 439.18 438.271 402.07–474.47 391.25–510.05

Turing 101.78 442.78 438.0309 401.35–474.72 390.74–511.09

Chao 148.84 489.84 439.5344 382.01–497.06 376.29–566.81
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Fig. 5  Frequency distribution of number of index cases with infected 
contacts (n = 30)

Table 5  Model performance for the count index cases with 
infected contacts

Bold values indicate show that Poisson is the best fit for the distribution of the 
number of index cases with infected contacts (n=30) due to the smallest AIC 
and BIC

Model Log-likelihood AIC BIC

Poisson ( ̂� = 1.126) −32.6684 67.3368 68.738

Negative Binomial (mue = 
1.176, size = 1175.709)

−32.6914 69.3829 72.1853

Geometric ( ̂p = 0.6) −33.6506 69.3012 70.7024

Table 6  Estimates of unobserved index cases with infected 
contacts, population size and 95% CI (n = 30) for the three 
approaches (based upon the Poisson model)

Fifth and sixth column show bootstrap CI by the normal approximation and 
percentile methods, respectively

Estimators f̂0 N̂ BT median 95% CI CI from 
percentile BT

MLE 14.37 44.38 45.51 36.62–54.40 33.87–64.17

Turing 14.12 44.12 45.47 36.01–54.94 33.29–64.63

Chao 14.22 44.22 45.5 33.21 −57.79 31.64–77.40
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generation of the count distributions of interest, our 
inference is therefore limited to CT. In other words, we 
cannot estimate the overall size of under-reporting that 
may be associated with other forms of COVID-19 sur-
veillance. Moreover, reiterating the index case as our unit 
of inference, our results cannot inform the number of 
contacts (infected or not) missed by CT, from the missed 
number of index cases estimated by our models. Other 
approaches have recently been suggested towards the 
estimation of the under-reported fraction of COVID-19 
cases. Lawson and Kim (2021) have recently modelled 
the spatio-temporal distribution of COVID-19 in South 
Carolina (US) and considered the role of asymptomatic 
transmission as a latent effect, and suggested the use of 
scaling factors to account for the missing cases as done 
for seasonal influenza [21]. As our data did not specify 
whether the index cases were symptomatic or not, our 
estimates of f0 are likely to include both.

Statistical considerations
For each index case, the number of observed contacts 
allowed to derive a count distribution which has then 
been modelled parametrically. Using the best fitting 
model, the number of index cases with unobserved con-
tacts could be determined and, thus, the completeness 
of CT. Clearly, the estimate of the frequency of index 
cases with undetected contacts depends on the model 
of choice. Hence, we also considered alternative estima-
tors including those of Chao and Turing which weaken 
the assumption of the chosen model. Chao’s estimator 
allows for heterogeneity in the parameter of the probabil-
ity model whereas Turing’s estimator avoids maximum 
likelihood estimation. If these alternative approaches lead 
to substantially different estimates of the size, the choice 
of the model might be questionable. In all our analyses, 
the approaches led to similar size estimates. We have 
also considered whether the distribution was affected 
by the observed heterogeneity as captured by the avail-
able covariates gender, age, or nationality. A general-
ized linear model analysis (using Poisson and logistic 
regression) showed no significant association to any of 
these covariates. Hence, we did not consider a stratified 
capture-recapture modeling. This is not to say that these 
variables have no effect on the sensitivity of CT, just that 
for our dataset such predictors did not show any signifi-
cance in the unobserved number of index cases. We note 
that a recent study on EVD showed different patterns in 
the number of contacts and the probability of zero con-
tacts between two well-defined waves in DRC, and sug-
gested possible improvements in CT as teams become 
more accustomed over time [11]. In our case, there was 
no clear break in the time series of cases to support such 

analysis. However, comparing first and subsequent waves 
of cases in Thailand would be feasible.

We assumed a closed population which is a reason-
able assumption under lock-down conditions, and 
typically met in these kinds of applications by steering 
the observational window to be small enough. We also 
assumed independence in the observation (sampling) 
of index cases. This would be typically violated if these 
would occur in clusters. Heterogeneity and cluster-
ing work in the same way so that Chao’s lower bound 
estimator would still be a conservative approach to 
the estimation of completeness. In all cases, the para-
metric modelling and Chao’ estimator have returned 
similar findings which supports our assumption of 
independence.

Perspectives
Several countries have used different CT mechanisms, 
e.g., traditional CT, use of CCTV systems, mobile appli-
cations, for the purpose of identifying contacts. In such 
situations, multi-list CRC models might merit study to 
assess multiple identification of contacts by more than 
one data stream.

Hook and Regal (1995) stated that the application of 
CRC methods had very little impact in the public health 
arena. In other words, their policy value might be small 
[22]. Providing more informative outputs with indication 
of where under-reporting is occurring, and what popula-
tion groups might be more affected would increase the 
policy value [23]. However, our limited dataset did not 
present significant heterogeneity to inform such ques-
tions. Richer datasets would be required to that effect. A 
related challenge is the timing of these types of evalua-
tions, with their retrospective nature also limiting their 
policy value. More real-time applications of CRC across 
the operational units engaged in the deployment of CT 
would merit study. These studies might support the iden-
tification and quantification of the impact of operational 
constraints (e.g., size of contact tracing teams, experi-
enced processes and teams) in the sensitivity of CT. Such 
efforts to extract more value from CT data might pro-
vide additional stimulus to strengthen this critical and 
neglected public health capacity.

Conclusion
Capture-recapture models have been used for more 
than four decades for the estimation of disease surveil-
lance sensitivity. This study provides a relatively sim-
ple approach for the estimation of the sensitivity of 
COVID-19 contact tracing efforts. Completeness of 
COVID-19 contact tracing in Thailand during the first 
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wave appeared moderate, with around 67% of infec-
tious transmission chains detected. Overdispersion was 
present suggesting that most of the index cases did not 
result in infectious transmission chains and the majority 
of transmission events stemmed from a small proportion 
of index cases.

Appendix: Turing and Chao estimators 
under Negative Binomial distribution
Under Negative Binomial distribution, the probability 
function is given by

where Ŵ(.) is the Gamma function, and π and κ are the 
model parameters. Since p0 = πκ , p1 = κπκ(1− π) 
and E(X) = κ(1− π)/π . We have p1/E(X) = πκ+1 
and p0 = (πκ+1)κ/(κ+1) = (p1/E(X))

κ/(κ+1) . In spirit of 
Turing estimator, we get

where S =
∑m

x=0 xfx . In addition, the negative bino-
mial distribution is part of the power series family 
px = axt

xA(t) with ax = Ŵ(x + κ)/(Ŵ(x + 1)Ŵ(κ)) and 
A(t) = (1− t)κ . Considering mixing the negative bino-
mial together with some arbitrary mixing density �(t) , we 
have

Since

then a0 , a1 , and a2 are replaced  and probabilities are sub-
stituted by observed frequencies. For a mixed Negative 
Binomial model with arbitrary density, the new estimator 
is accomplished in spirit of Chao estimator as

(see [24]).
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Ŵ(x + κ)
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∫

1

0

Ŵ(x + κ)

Ŵ(x + 1)Ŵ(κ)
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≤
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(
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